AHMET FERGANİ
9. yüzyılın başlarında dünyaya geldiği kabul edilen ünlü matematik ve astronomi bilgini Ahmet Ferganî, çağının bilim ve kültür merkezlerinden olan Türkistan'ın Fergana bölgesindendir. Bilim ve kültür tarihimizin birinci elden kaynakları olan tezkireler (biyografik eserler)de doğum tarihi ile ilgili bir bilgi bulunmamakla birlikte kendisi gibi bir astronom olan babasının adının Muhammed, dedesinin ise Kesir olduğu kayıtlıdır. Ahmet Ferganî, ilk öğrenimini ünlü bilginlerin yetiştiği Fergana'da yaptı ve büyük bir ihtimalle astronomi konusundaki bilgilerini babasından aldı. Belli bir seviyeye geldikten sonra da mevcut bilgilerine yeni bilgiler katmak amacıyla da, çağının bilim, kültür ve aynı zamanda halifelik merkezi olan Bağdat'a geldi. Ömrünün yarısına yakınını burada geçiren Ferganî, kısa sürede matematik ve astronomi konularındaki bilgisini Bağdat bilim çevresine kabul ettirip, bilimin gelişmesine olan katkılarıyla bilim tarihinde adlarından övgüyle bahsedilen Abbasi halifelerinden Me'mun ve el-mütevekkil döneminin en ünlü bilginleri arasına girdi. 861 yılında halife el-Mütevekkil tarafından Nil ırmağı kıyısında yapılan ölçüm işlerini yürütmesi için Mısır'a gönderilen Ferganî'nin, bundan sonraki yaşamı ve her ne kadar Prof. Dr. W. Barthold'un "İslam Medeniyeti Tarihi" adlı eserinde 861 tarihini gösteriyor ise de, ölüm tarihini bilmiyoruz
ALİ KUŞÇU
Türk-İslam Dünyası astronomi ve matematik alimleri arasında, ortaya koyduğu eserleriyle haklı bir şöhrete sahip Ali Kuşçu, Osmanlı Türkleri'nde, astronominin önde gelen bilgini sayılır. "Batı ve Doğu Bilim dünyası onu 15. yüzyılda yetişen müstesna bir alim olarak tanır." Öyle ki; müsteşrik W .Barlhold, Ali Kuşcu'yu "On Beşinci Yüzyıl Batlamyos'u" olarak adlandırmıştır. Babası, Uluğ Bey'in kuşcu başısı (doğancıbaşı) idi. Kuşçu soyadı babasından gelmektedir. Asıl adı Ali Bin Muhammet'tir. Doğum yeri Maveraünnehir bölgesi olduğu ileri sürülmüşse de, adı geçen bölgenin hangi şehrinde ve hangi yılda doğduğu kesinlikle bilinmektedir. Ancak doğum şehri Semerkant, doğum yılının ise 15. yüzyılın ilk dörtte biri içerisinde olduğu kabul edilmektedir. 16 Aralık 1474 (h. 7 Şaban 879) tarihinde İstanbul'da ölmüş olup, mezarı Eyüp Sultan Türbesi hareminde bulunmaktadır. Ölüm tarihi; torunu meşhur astronom Mirim Çelebi'nin (ölümü, Edirne 1525) Fransça yazdığı bir eserin incelenmesi sonucu anlaşılmıştır. Mezar yerinin 1819 yılına kadar belirli olduğu ve hüsn-ü muhafazasının yapıldığı; ancak 1819 yılından sonra, Ali Kuşcu'ya ait mezarın yerine, zamanının nüfuzlu bir devlet adamının mezar taşının konmuş olduğu anlaşılmaktadır. Uluğ Bey'in Horasan ve Maveraünnehir hükümdarlığı sırasında, Semerkant'ta ilk ve dini öğrenimini tamamlamıştır. Küçük yaşta iken astronomi ve matematiğe geniş ilgi duymuştur. Devrinin en büyük bilginlerinden; Uluğ Bey , Bursalı Kadızade Rumi, Gıyaseddün Cemşid ve Mu'in al-Din el-Kaşi'den astronomi ve matematik dersi almıştır. Önce,Uluğ Bey, tarafından 1421 yılında kurulan Semerkant Rasathanesi ilk müdürü, Gıyaseddün Cemşid'in, kısa süre sonra da Rasathanenin ikinci müdürü Kadızade Rumi'nin ölümü üzerine, Uluğ Bey Rasathaneye müdür olarak Ali Kuşcu'yu görevlendirmiştir. Uluğ Bey Ziyc'inin tamamlanmasında büyük emeği geçmiştir. Nasirüddün Tusi'nin Tecrid-ül Kelam adlı eserine yazdığı şerh, bu konuda da gayret ve başarısının en güzel delilini teşkil etmektedir. Ebu Said Han'a ithaf edilen bu şerh, Ali Kuşcu'nun ilk şöhretinin duyulmasına neden olmuştur. Kaynakların değerlendirilmesi sonucu anlaşılmaktadır ki; Ali Kuşcu yalnız telih eseriyle değil, talim ve irşadıyle devrini aşan bir bilgin olarak tanınmaktadır. Öyle ki; telif eserlerinin dışında, torunu Mirim Çelebi, Hoca Sinan Paşa ve Molla Lütfi (Sarı Lütfi) gibi astronomların da yetişmesine sebep olmuştur. Bu bilginlerle beraber, Ali Kuşcu'yu eski astronominin en büyük bilginlerinden birisi olarak belirtebiliriz. ESERLERİ: Ali Kuşcu'nun özellikle, matematik ve astronomi ile ilgili eserleri, gerçek ilmi kişiliğini ortaya koymaktadır. Bu eserlerinin adları şunlardır; Risale-i fi'l Hey'e (Astronomi Risalesi) Risale-i fi'l Fehiye (Fetih Risalesi) Risale-i Hisap (Aritmetik Risalesi) Risale-i Muhammediye (Cebir ve Hesap konularından bahseder) Tecrid'ül Kelam (Sözün Tecridi) Risale-i Adudiye Unkud-üz zvehir fi Man-ül Cevahir (Mücevherlerin Dizilmesinde Görülen Salkım) Vaaz İstiarad
CAHİT ARF
1910 yılında Selanik'te doğdu. Yüksek öğrenimini Fransa'da Ecole Normale Superieure'de tamamladı (1932). Bir süre Galatasaray Lisesi'nde matematik öğretmenliği yaptıktan sonra İstanbul Üniversitesi Fen Fakültesi'nde doçent adayı olarak çalıştı. Doktorasını yapmak için Almanya'ya gitti. 1938 yılında Göttingen Üniversitesi'nde doktorasını bitirdi. Yurda döndüğünde İstanbul Üniversitesi Fen Fakültesi'nde profesör ve ordinaryus profersörlüğe yükseldi. Burada 1962 yılına kadar çalıştı. Daha sonra Robert Koleji'nde Matematik dersleri vermeye başladı. 1964 yılında Türkiye Bilimsel ve Teknik Araştırma Kurumu (TÜBİTAK) bilim kolu başkanı oldu. Daha sonra gittiği Amerika Birleşik Devletleri'nde araştırma ve incelemelerde bulundu; Kaliforniya Üniversitesi'nde konuk öğretim üyesi olarak görev yaptı. 1967 yılında yurda dönüşünde Orta Doğu Teknik Üniversitesi'nde öğretim üyeliğine getirildi. 1980 yılında emekli oldu. Emekliye ayrıldıktan sonra TÜBİTAK'a bağlı Gebze Araştırma Merkezi'nde görev aldı. 1985 ve 1989 yılları arasında Türk Matematik Derneği başkanlığını yaptı. Arf İnönü Armağanı'nı (1948) ve TÜBİTAK Bilim Ödülü'nü kazandı (1974). Cebir ve Sayılar Teorisi üzerine uluslararası bir sempozyum 1990'da 3 ve 7 Eylül tarihleri arasında Arf'in onuruna Silivri'de gerçekleştirilmiştir. Halkalar ve Geometri üzerine ilk konferanslarda 1984'te İstanbul'da yapılmıştır. Arf, matematikte geometri kavramı üzerine bir makale sunmuştur. Cahit Arf 1997 yılının Aralık ayında bir kalp rahatsızlığı nedeniyle aramızdan ayrıldı...
ALAN TURİNG (1912 -1954)
Manchester England Bugün bilinen bilgisayar mantığının gelişmesinde öncüdür. Yapay zeka kavramını ortaya atan ilk kişilerdendir. Eğitimi: 1926 Sherborne okulu, 1931 Wrangler, Matematik Tripos, Kings Koleji,Cambridge 1938 Princedon Üniversitesi Alan Mathison Turing bilgisayar alanının büyük öncülerindendir. Günümüzde "Turing makinası" ve "Turing testi" ile anılır. Matematiksel algoritmayı dijital bilgisayarlara uygulamıştır. Araştırmaları yapay zeka alanının doğal yaratılması ve makinalar arasındaki ilişkisinde yoğunlaşmıştır. Zekası ve öngörüsü onun bilgi çağında ön sıralara adım atmasını sağlamıştır. Matematik kariyerine 1931 'de Cambridge üniversitesindeki King Kolejlinde başlamıştır. Burada öğretim görevlisi oldu ve buradan Princeton Üniversitesine tayin edildi. Bu zamanlar onun sonradan "Turing makinası " diye adlandırılan makinayı araştırdığı zamanlardı. Turing dijital bilgisayar kavramının gelişmesine öncülük etmiştir. Turing makinasını günümüzde ki çok amaçlı bilgisayarların aynısını tasavvur ederek yapmıştır. Bir ve sıfırlardan oluşmuş seriyi teypden okuyabilen bir makina tasarlamıştır. Bu birler ve sıfırlar problem parçalarını çözmeye ihtiyaç duyulan adımları tanımlar. Turing makinası bütün bu adımları okur ve ardışık olarak yapar. O bütün problemler için bir algoritma geliştirilebileceğine inanırdı. II. dünya savaşı sırasında Turing bilgisini ve düşüncelerini Büyük Britanya'nın Haberleşme bölümünde kullandı. Almanların haberleşmede kullandıkları kodları deşifre etmek için matematiksel becerisini kullandı. Bu özellikle zor bir işti çünkü Almanlar Enigma (anlaşılmaz) adında bir bilgisayar teybi geliştirmişlerdi. O zamanın kod çözücüleri, bunu çözecek bir yapının geliştirilmesini imkansız görüyorlardı. Bu haberleşme merkezinde çalıştığı müddetçe Turing ve asistanları COLOSSUS isimli makinayla uğraşmışlardı. COLOSSUS hızlı ve verimli bir şekilde Almanlar tarafından yapılan enigmanın kodunu çözdü. Sonuçta COLOSSUS gerçekten servomotorlar ve metalden oluşuyordu fakat, bu dijital bilgisayarlara geçişin ilk adımıydı. İkinci dünya savaşından sonra Turing NPL (National Physical Laboratory) çalışmak için gitti ve dijital bilgisayarlar üzerindeki çalışmalarına devam etti. Otomatik bilgisayar motorlarını geliştirmek için çalıştı, doğru dijital bilgisayarın yapılması konusundaki ilk teşebbüslerden biriydi. Bu durumda doğa ile bilgisayarlar arasındaki ilişkiyi incelemeye başladı ve "Akıllı makineler" adında sonradan 1969 da basılan yazıyı kaleme aldı. Bu yapay zeka kavramının yayılmaya başladığı ilk zamanlardan biriydi. Turing zeki makinaların insan beyninin ayrıntılı tasarımı yapılarak oluşturulabileceğine inanırdı. 1950'de "Turing testi" diye bilinen bir makale yayınladı. Test bir kimsenin klavye aracılığı ile bir insana ve bir zeki makinaya soru sormasından oluşmaktadır. Turing 7 haziran 1954 ölmüştür. Ölümünde birçok iddia ortaya atılmıştı, ama ne tür olursa olsun O ölmüştü. Ve gerçekten Turing bilgisayar alanının en büyüklerinden biriydi. Günümüzde bilgisayar bilimcileri hala onun makalelerinden yararlanmaktadırlar.
BLAİSE PASCAL
Doğum: 1623 Ölüm: 1662 Pascal, henüz küçük yaşta kendisini gösteren dehalardandır. Henüz 12 yaşındayken, hiç geometri bilgisine sahip olmadığı halde, daireler ve eşkenar üçgenler çizmeye başlamış, bir üçgenin iç açılarının toplamının iki dik açıya eşit olduğunu kendi kendisine bulmuştur. Avukat olan ve matematikle çok ilgilenen babası, onun Yunanca ve Latince’yi iyi öğrenmeden matematiğe yönelmesini istemiyordu. Bu nedenle bütün matematik kitaplarını saklayarak Pascal’ın bu konu ile ilgilenmesini yasaklamıştır. Pascal, çocukluğunda “Geometri neyi inceler?” sorusunu babasına sormuş ve “doğru biçimde şekiller çizmeyi ve şekillerin kısımları arasındaki ilişkileri inceler” cevabını almıştır. Pascal, bu cevaba dayanarak, gizli gizli geometri teoremleri kurmaya ve kanıtlamaya başlamıştır. Sonunda babası, onun yeteneğini anlamış ve ona Euklid’in Elementler’ini ve Apollonius’un Konikler’ini vermiştir. Dil derslerinden arta kalan zamanlarında babasının verdiği kitapları okuyan Pascal, 16 yaşında konikler üzerine bir eser yazmıştır. Bu eserin mükemmelliği karşısında Descartes, eserin Pascal gibi genç biri tarafından yazılmış olduğuna inanmakta güçlük çekmiştir. Pascal, 19 yaşında, aritmetik işlemlerini mekanik olarak yapan bir hesap makinesi icat etmiştir. Pascal yalnızca teorik bilimlerde değil, pratik ve deneysel bilimlerde de yetenekli ve özgün bir araştırmacıydı. 23 yaşında, Toricelli’nin atmosfer basıncı ile ilgili çalışmasını incelemiş ve bir dağa çıkartılan barometredeki civa sütununun düştüğünü, yani yükseğe çıkıldıkça hava basıncının azaldığını göstermiştir. Diş ağrısından uyuyamadığı bir gece rulet oyunu ve sikloid üzerine düşünmüş ve sikloid eğrisinin özelliklerini keşfetmiştir. Pascal, Fermat ile yazışarak, olasılık teorisini kurmuş ve bir binom açılımında katsayıları vermiştir. Pascal Üçgeni”nin keşfi de ona aittir. Pascal, çok genç yaşlarda çok önemli çalışmaları tamamlamış ve matematiğin gelişimine çok önemli katkılar yapmıştır. Pascal, 25 yaşına geldiğinde kendisini felsefe ve dine adamış, 39 yaşında da ölmüştür.
AUGUSTİN LOUİS CAUCHY(1789-1857)
İlk büyük Fransız matematikçisi olan Cauchy, 1789’da Paris’te doğdu. 1814 yılında, karmaşık fonksiyonlar kuramını geliştirdi. Bugün, Cauchy teoremi adıyla bilinen ünlü teoremi ifade ederek ispatladı. Bu alanda integraller ve bunların hesaplama yöntemleri yine Cauchy tarafından verildi. Bu sahadaki eseri 1827 yılında basıldı. 1815 yılında, Fermat’ın bir teoreminin ispatını verdi.1816 yılında sıvılar üzeirnde dalgaların yayılmasının kuramını içeren yaptıyla Akademi ödülünü aldı. 1815 yılında Polytechnique’te analiz öğretmeni ve profesör oldu. Sorbonne’a ve College de France’a girdi. Her işte başarılı oluyordu. Akademiye haftada iki çalışma sunuyordu. Geliştirdiği ve yaptığı çalışmaları öğrenmek için Avrupa’nın her yanından matematikçiler geliyordu. 1816 yılında Akademiye başkan seçildi.1816 yılından itibaren cebir ve mekanik dersleri vermeye başladı. 1830 devriminden sonra bağlılık andını kabul etmediği için görevinden ayrıldı ve Torino’ya giderek kendisi için açılan matematik kürsüsünde çalışmaya başladı. 1833’te Bordeaux Dükü’nün fen eğitimini yönetmek üzere Prag’a çağrıldı. 1838’de Paris’e döndü. Paris Fen Fakültesi matematiksel gökbilim profesörlüğüne atandı ve 1852 yılına dek bu görevine devam etti. Cauchy, arı ve uygulamalı matematiğin bütün bölümleriyle ilgilendi. Ama tarihe çözümleme üstüne yaptığı çalışmalarla geçti. 1821’de yayımlanan Cours d’analyse adlı kitabında çözümlemenin ana ilkelerini gözden geçirdi ve bunları yapıcı bir biçimde eleştirdi; böylece elementer fonksiyonların ve serilerin incelenmesine kesinlik kazandırdı. Cauchy herşeyden önce, karmaşık bir değişkenin fonksiyonları kuramının yaratıcısıdır. Bu konuda çıkış noktası karmaşık bölgelerde integrallemeydi (1814 - 1830): eğrisel integrali tanımladı, bunun temel özelliklerini kanıtladı ve kalanlar hesabını ortaya attı. İkinci grup çalışmasında (1830 - 1846) fonksiyonların serilere açılımını ve karmaşık diferansiyelleme ya da analitiklik kavramlarını inceledi. Yaptığı cebir çalışmaları (yerine koyma hesabı, determinantlar ve matrisler kuramı, gruplar ve cebirsel genişlemeler kuramının oluşturulması) XIX. yy tarihsel hareketine, cebirsel yapıların bulunması ve incelenmesi biçiminde geçti. Cauchy mekanik alanında esneklik kuramının matematikle ilgili yönünü düzenledi. Gökbilim hesaplarını kolaylaştırdı ve hatalar kuramını geliştirdi. Fonksiyonlar kuramında da çok yenilikleri olan Cauchy, Cauchy - Riemann denklemleri, Cauchy teoremi, Cauchy integral formülü ve cauchy esas değeri buluşları sayılabilir. Bu saydığımız bağıntılar oldukça geniş buluşlardır. Karmaşık analizde çok uygulaması olan çok derin konuları içine almaktadır. İstenildiği kadar da genişletilip ilmin diğer dallarına uygulanabilirliği vardır.
GELENBEVİ İSMAİL EFENDİ
1730 yılında şimdiki Manisa'nın Gelenbe kasabasında doğan Gelenbevi İsmail efendi, Osmanlı İmparatorluğu matematikçilerindendir. Asıl adı İsmail'dir. Gelenbe kasabasında doğduğu için ikinci adı onun bu doğduğu kasabadan gelir. Daha çok Gelenbevi adıyla ün kazanmıştır. Önce, kendi çevresindeki bilginlerden ilk bilgilerini almıştır. Daha sonra, öğrenimini tamamlamak üzere İstanbul'a gitmiştir. Burada, çok değerli ve kültürlü öğretmenlerden yararlandı ve matematiğini oldukça ilerletti. Müderrislik sınavına girerek kazandı ve 33 yaşında müderris oldu. Bundan sonra kendisini tümüyle ilme verdi. Gelenbevi, eski yöntemle problem çözen son Osmanlı matematikçisidir. Sadrazam Halil Hamit paşa ve Kaptan-ı Derya Cezayirli hasan paşa'nın istekleri üzerine, Kasımpaşa'da açılan Bahriye Mühendislik Okulu'na altmış kuruşla matematik öğretmeni olarak atandı. Bu atama ona parasal yönüyle bir rahatlık getirdi. Bazı silahların hedefe vurmaması, padişah III. Selim'i kızdırmış ve Gelenbevi'yi huzura çağırarak ona uyarıda bulunmuştur. Hedefe olan uzaklığı tahmin ederek gerekli düzeltmeleri yapmış ve topların hedefe vurmalarını sağlamıştır. Gelenbevi'nin bu başarısı padişahın dikkatini çekmiş ve padişah tarafından ödüllendirilmiştir. Gelenbevi, Türkçe ve Arapça olmak üzere tam otuz beş eser bırakmıştır. Türkiye'ye logaritmayı ilk sokan Gelenbevi İsmail Efendi'dir. İstanbul Yüksek Mühendis mektebi'ni bitirdikten (1914) sonra Berlin Üniversitesi'nde Albert Einstein'in yanında doktorasını yaptı (1919). Türkiye'ye dönünce, bitirdiği okulda öğretim ü-yesi olarak çalışmaya başladı. Üniversite reformunu hazırlayan kurulda yer aldı. Yeni kurulan İstanbul Üniversitesi Fen Fakültesi'nde analiz profesörü ve dekan olduğu gibi Yüksek Mühendis Mektebi'nde de ders vermeye devam etti. Yüksek Mühendis Mektebi İstanbul Teknik Üniversitesi'ne dönüştürülünce buradan ayrıldı ve yalnızca İstanbul Üniversitesi'nde çalış-maya devam etti. Daha sonra burada ordinaryüs profesör oldu. 1948 yılında Fen Fakültesi Dekanlığı'na getirildi.
HAREZMİ
Horasan bölgesinde bulunan harezm(bugünkü Türkmenistan'ın Khiva )şehrinde dünyaya gelen Harezmi'nin tam adı Abdullah bin Musa el-Harezmi'dir. Harezm'de temel eğitimimini alan Harezmi gençlinin ilk yıllarında Bağdat'taki ileri bilim atmosferinin varlığını öğrenir. İlmi konulara doyumsuz denilebilecek seviyedeki bir aşkla bağlı olan Harezmi ilmi konularda çalışma idealini gerçekleştirmek için Bağdat'a gelir ve yerleşir. Devrinde bilginleri himayesi ile meşhur olan abbasi halifesi Mem'un Harezmideki ilm kabliyetten haberdar olunca onu kendisi tarafından Eski Mısır, Mezopotamya, Grek ve Eski hint medeniyetlerine ait eserlerle zenginleştirilmiş Bağdat Saray Kütüphanesinin idaresinde görevlendirilir. Daha sonra da Bağdat Saray Kütüphanesindeki yabancı eserlerin tercümesini yapmak amaıyla kurulan bir tercüme akademisi olan Beyt'ül Hikme 'de görevlendirilir. Böylece Harezmi Bağdat'ta inceleme ve araştırma yapabilmek için gerekli bütün maddi ve manevi imkanlara kavuşur. Burada hayata ait bütün endişelerden uzak olarak matematik ve astronomi ile ilgiliaraştırmalarına başlar. Bağdat bilim atmosferi içerisinde kısa zamanda üne kavuşan Harezmi Şam'da bulunan Kasiyun Rasathanesin'de çalışan bilim heyetinde ve yerkürenin bir derecelik meridyen yayı uzunluğunu ölçmek için Sincar Ovasına giden bilim heyetinde bulunduğu gibi Hint matematiğini incelemek için Afganistan üzerinden Hindistana giden bilim heyetine başkanlık da etmiştir. Harezmi 'nin latinceye çevrilen eserlerinden olan ve ikinci dereceden bir bilinmeyenli ve iki bilinmeyenli denklem sistemlerinin çözümlerini inceleyen El-Kitab 'ul Muhtasar fi 'l Hesab 'il cebri ve 'l Mukabele adlı eseri şu cümleyle başlar : "Algoritmi şöyle diyor: Rabbimiz ve koruyucumuz olan Allah 'a hamd ve senalar olsun" ESerleri: Matematik İle İlgili Eserleri 1)El-Kitab'ul Muhtasar fi'l Hesab'il Cebri ve'l Mukabele 2) Kitab al-Muhtasar fil Hisab el-Hind 3) el-Mesahat Astronomi İle İlgili Eserleri 1) Ziyc 'ul Harezmi 2)Kitab al-Amal bi 'l Usturlab 3)Kitab 'ul Ruhname Coğrafya İle İlgili Eseri Kitab surat al-arz Tarih İle İlgili Eserleri Kitab 'ul Tarih
JOHANN KARL FRIEDRICH GAUSS (1777-1855)
Alman matematikçisi. Zamanının gerçek dâhisiydi. 1795'te Göttingen Üniversitesine girdi. 1799'da Cebrin Temel Teoremi olarak bilinen ve n. dereceden bir cebirsel denklemin tam n tane kökü vardır şeklinde ifade edebileceğimiz teoremi kanıtlayarak doktora derecesini aldı. Gauss matematiğin hemen her dalında çalıştı. 1801 yılında aritmetiğin temel teoremini kanıtladı : Her doğal sayı asal sayıların çarpımı olarak bir ve yalnız bir şekilde gösterilebilir. Gauss aynı zamanda Öklid'in aksiyomlarını değiştirerek Öklid dışı geometri geliştirdi. Ancak bu çalışmasını yayınlamadığı için aynı konuda çalışmalarını yayınlayan Lobaçevski ve Bolyai, Öklid dışı geometrilerin kurucusu olarak bilinirler. 1832 yılında manyetik olayların ölçülmesini olanaklı kılan birimleri sistemi geliştirdi. Bu nedenle manyetik akı birimi gauss adı verildi. 1833'de bir telgraf cihazı yaptı. Gauss daha üniversitede öğrenciyken pergel-cetvel kullanarak bir düzgün onyedigenin nasıl çizileceğini bulmuştu. Ayrıca pergel-cetvel kullanılarak her çokgenin çizilemeyeceğini, belirli çokgenlerin çizilebileceğini göstermişti. Bu nedenle doğduğu kent Braunschweig'de Gauss'un onyedi köşeli bir kaide üzerinde yükselen bir heykeli bulunmaktadır.
KERİM ERİM
1940 - 1952 yılları arasında İstanbul Üniversitesi Fen Fakültesi'ne bağlı Matematik Enstitüsü-'nün başkanlığını yaptı. Türkiye'de yüksek matematik öğretiminin yaygınlaşmasında ve çağ-daş matematiğin yerleşmesinde etkin rol oynadı. Mekaniğin matematik esaslara dayandırıl-masına da öncülük etti. Matematik ve fizik bilimlerinin felsefe ile olan ilişkileri üzerinde de çalışmalarda bulunan Erim'in Almanca ve Türkçe yapıtları bulunmaktadır.Bunlardan bazıları şunlardır: Nazari Hesap(1931), Mihanik(1934), Diferansiyel ve İntegral Hesap(1945), Über die Traghe-its-formen eines modulsystems(Bir modül sisteminin süredurum biçimleri üstüne - 1928) Cebir’e neden ihtiyaç duyuldu? Cebir ismi nereden geldi?
Cebir yapı, bağlantı ve miktar üzerine uğraşan bir matematik dalıdır. Bilinmeyen değerlerin, işaret ve harflerle sembolize edilerek kurulan denklemlerle bulunması (yada bilinmeyenlerin arasındaki bağlantının bulunması) esasına dayanır. Cebir temellerini El Harezmi’den alır. Cebir ardı Harezmi’nin “El’Kitab’ül-Muhtasar fi Hısab’il - Cebri ve’l-Mukabele” adlı eserinden gelmektedir. Bu eser aynı zamanda doğu ve batının ilk cebir kitabı olma özelliğini taşımaktadır. El Harezmi’den bu yana cebir çok değişmiştir. Cebir bilim dalı, aritmetiğin çözemediği pek çok problemi çözebilmektedir.
Cebir’in ilk defa ne zaman ve kim tarafından kullanıldı?Cebir ile
ilgili en eski bilgiler M.Ö. 1700-1600 dan kalan eski Mısır papirüsleri üzerinde yazılmış olarak bulunmuştur. Kullanımı bazı basit denklemlerin çözümlerinden ibaret olduğu ortaya çıkmıştır. Sonradan eski Yunan matematikçileri cebir ile geometriyi ortak kullanmışlardır. Euclid (M.Ö. 300) ve ilk olarak cebirsel semboller kullanan Diophanteus (M.Ö. 275) xy = k2 , x+y = a , x2 - y2 = a2 biçimindeki denklemlerin çözümlerini aramışlardır.
Eski zamanlarda Çinliler ve Hintliler de denklem çözmeyi biliyorlardı; Brahmagupta (M.S.628), Mahavira (M.S. 850), Bhaskara (M.S. 1150) cebirsel yöntemlerle bir çok problemi çözmüşlerdir. İslam matematikçileri arasında Mohammed ibn Musa al-KhoWarizmi (M.S. 825) ve al-Karkhi (M.S. 1100) en ünlüleridir. Özellikle, al-KhoWarizmi’nin cebri avrupalılar üzerinde büyük etki göstermiştir. Avrupada ilk olarak, İtalyada cebir öğrenilmeye başlamıştır.Özellikle, ikinci ve üçüncü derece denklemlerin çözülmesine çalışılmıştır. Avrupada cebir ile uğraşan en eski matematikçiler Tataglia (1535), Cardan (1545), Ferrari (1540), Vieta (1590), Harriot (1600) , Descartes (1637) ve Wallis (1655) dir.Daha sonra,cebir Avrupalı matematikçiler tarafından geliştirilmiştir. Ruffini (1803), Abel (1824), Galois (1831) 19-uncu yüzyılın başındaki en önemli matematikçilerdir.Harezmi, Ebu Abdullah bin Musa el Harezmi (Arapça: أبو عبد الله محمد بن موسى الخوارزمي ) Horasan'da doğup Bağdat'ta yaşamış olan ünlü matematik, astronomi ve coğrafya bilginidir. Matematik alanındaki çalışmaları cebirin temelini oluşturmuştur.
cebire neden x denildi?
Neredeyse her bilinmeyeni simgelemek için kullanılan x harfi nereden geliyor?
Bu harfin kökeni Arapça “şey” kelimesine dayanıyor. Daha sonra İspanyolcaya çevrilen cebir kaynaklarında “xay” olarak gözüken ifade x olarak kısaltıldı ve cebir’in bilinmeyeni simgelemede kullandığı en tercih edilir harf haline g |
güzel olmuş merve
YanıtlaSilteşekürler serhat
YanıtlaSil